
 Let humanity enter the safe blockchain world.

- 1 -

 	

 Let humanity enter the safe blockchain world.

- 2 -

Version description

The revision Date Revised Version

Write

documentation
20220721 KNOWNSEC Blockchain Lab V1.0

Document information

Title Version Document Number Type

OrderNChaos

 Smart Contract Audit

Report

V1.0
Open to

project team

Statement
KNOWNSEC Blockchain Lab only issues this report for facts that have occurred

or existed before the issuance of this report, and assumes corresponding responsibilities

for this. KNOWNSEC Blockchain Lab is unable to determine the security status of its

smart contracts and is not responsible for the facts that will occur or exist in the future.

The security audit analysis and other content made in this report are only based on the

documents and information provided to us by the information provider as of the time

this report is issued. KNOWNSEC Blockchain Lab 's assumption: There is no missing,

tampered, deleted or concealed information. If the information provided is missing,

tampered with, deleted, concealed or reflected in the actual situation, KNOWNSEC

Blockchain Lab shall not be liable for any losses and adverse effects caused thereby.

 Let humanity enter the safe blockchain world.

- 3 -

Directory

1. Summarize .. - 6 -

2. Item information .. - 7 -

 Item description .. - 7 -

 The project's website .. - 7 -

 White Paper .. - 7 -

 Review version code .. - 7 -

 Contract file and Hash/contract deployment address - 7 -

3. External visibility analysis ... - 9 -

 Bank contracts .. - 9 -

 Chaos contracts ... - 9 -

 GLA contracts ... - 9 -

 Helper contracts .. - 10 -

 Market contracts ... - 10 -

 Order contracts ... - 10 -

 prChaos contracts ... - 11 -

 StakePool contracts .. - 11 -

4. Code vulnerability analysis ... - 12 -

 Summary description of the audit results ... - 12 -

5. Business security detection .. - 15 -

 Bank.sol contract withdraws the rental token function【Pass】 - 15 -

 GLA.sol contract whitelist related function【Pass】 - 16 -

 Let humanity enter the safe blockchain world.

- 4 -

 GLA.sol contract request token function【Pass】 - 17 -

 Helper.sol contract investment stablecoin function【Pass】 - 18 -

 Market.sol contract stablecoin related function【Pass】 - 19 -

 StakePool.sol contract pledge related function【Pass】 - 20 -

6. Code basic vulnerability detection .. - 24 -

 Compiler version security【Pass】 ... - 24 -

 Redundant code【Pass】 ... - 24 -

 Use of safe arithmetic library【Pass】 .. - 24 -

 Not recommended encoding【Pass】 .. - 25 -

 Reasonable use of require/assert【Pass】 ... - 25 -

 Fallback function safety【Pass】 .. - 26 -

 tx.origin authentication【Pass】 .. - 26 -

 Owner permission control【Pass】 ... - 26 -

 Gas consumption detection【Pass】 ... - 27 -

 call injection attack【Pass】 .. - 27 -

 Low-level function safety【Pass】 .. - 27 -

 Vulnerability of additional token issuance【Reminder】 - 28 -

 Access control defect detection【Pass】 ... - 29 -

 Numerical overflow detection【Pass】 ... - 29 -

 Arithmetic accuracy error【Pass】 .. - 30 -

 Incorrect use of random numbers【Pass】 .. - 30 -

 Unsafe interface usage【Pass】 ... - 31 -

 Let humanity enter the safe blockchain world.

- 5 -

 Variable coverage【Pass】 ... - 31 -

 Uninitialized storage pointer【Pass】 .. - 31 -

 Return value call verification【Pass】 ... - 32 -

 Transaction order dependency【Pass】 ... - 33 -

 Timestamp dependency attack【Pass】 ... - 33 -

 Denial of service attack【Pass】 .. - 34 -

 Fake recharge vulnerability【Pass】 ... - 34 -

 Reentry attack detection【Pass】 ... - 35 -

 Replay attack detection【Pass】 .. - 35 -

 Rearrangement attack detection【Pass】 ... - 35 -

7. Appendix A: Security Assessment of Contract Fund Management - 37 -

 Let humanity enter the safe blockchain world.

- 6 -

1. Summarize
The effective test period of this report is from July 19, 2022 to July 21, 2022.

During this period, the security and standardization of the code of OrderNChaos

smart contract code Bank, Chaos, GLA, Helper, Market, Order, prChaos,

StakePool will be audited and used as the statistical basis for the report.

The scope of this smart contract security audit does not include external contract

calls, new attack methods that may appear in the future, and code after contract

upgrades or tampering. (With the development of the project, the smart contract may

add a new pool , New functional modules, new external contract calls, etc.), does not

include front-end security and server security.

In this audit report, engineers conducted a comprehensive analysis of the common

vulnerabilities of smart contracts (Chapter 6). The smart contract code of the

OrderNChaos is comprehensively assessed as PASS.

Since the testing is under non-production environment, all codes are the latest

version. In addition, the testing process is communicated with the relevant engineer,

and testing operations are carried out under the controllable operational risk to avoid

production during the testing process, such as: Operational risk, code security risk.

KNOWNSEC Attest information:

classification information

report number

report query link

 Let humanity enter the safe blockchain world.

- 7 -

2. Item information

 Item description

Briefly, OrderNChaos(ONC) is a twin system of algorithmic stable coins which

borrows the idea of Nirvana on the Solana network, ONC protocol is implemented in

solidity and can be run on any EVM compatible chains.

 The project's website

https://ordernchaos.finance

 White Paper

https://docs.ordernchaos.finance/overview/introduction

 Review version code

 Contract file and Hash/contract deployment address

The contract

documents
MD5

Bank.sol 0FED1542314289D92BE1B32E35A2A18A

Chaos.sol DDEBB8469C50F41DD52B57FB0B34E9B5

GLA.sol 920246D87A1804077EE5CB093FD2743B

Helper.sol 1E5B66C5F612FFB8B4ED8C8EF7B76B65

Market.sol 492CF42D40B82650EE03BA728F1D83E6

Order.sol F741C237CFE35118B7A6BE67ABD71083

 Let humanity enter the safe blockchain world.

- 8 -

prChaos.sol 14C58B9D61841CE1486FE3D486A10D2B

StakePool.sol 21ADC7E5FB459EBE42660BCC20761C7B

 Let humanity enter the safe blockchain world.

- 9 -

3. External visibility analysis

 Bank contracts

Bank

funcName visibility
state

changes
decorator

payable

reception
instructions

available public Flase isInitialized --- ---

borrow external True isInitialized --- ---

repay external True isInitialized --- ---

 Chaos contracts

Chaos

funcName visibility
state

changes
decorator

payable

reception
instructions

mint public True onlyOwner --- ---

burn public True onlyOwner --- ---

burnFrom public True onlyOwner --- ---

 GLA contracts

GLA

funcName visibility
state

changes
decorator

payable

reception
instructions

getPhase external Fasle --- --- ---

addWhitelist external True onlyOwner --- ---

whitelistBuy external True whitelistEnabled --- ---

 Let humanity enter the safe blockchain world.

- 10 -

 Helper contracts

Helper

funcName visibility
state

changes
decorator

payable

reception
instructions

invest public True override --- ---

reinvest external True override --- ---

borrowAndInvest public True override --- ---

 Market contracts

Market

funcName visibility
state

changes
decorator

payable

reception
instructions

lowerAndAdjust internal True --- --- ---

setMarketOptions external True override --- ---

addBuyStablecoin external False override --- ---

manageStablecoin

s
external True onlyOwner --- ---

estimateBuy public False isStarted --- ---

buyFor public True override --- ---

realizeFor public True onlyOwner --- ---

sellFor public True onlyOwner --- ---

burnFor public True onlyOwner --- ---

 Order contracts

Order

 Let humanity enter the safe blockchain world.

- 11 -

funcName visibility
state

changes
decorator

payable

reception
instructions

mint public True onlyOwner --- ---

burnFrom public True override --- ---

 prChaos contracts

prChaos

funcName visibility
state

changes
decorator

payable

reception
instructions

mint public True override --- ---

burn public True override --- ---

burnFrom public True override --- ---

 StakePool contracts

StakePool

funcName visibility
state

changes
decorator

payable

reception
instructions

add external True onlyOwner --- ---

pendingRewards external False isInitialized --- ---

deposit external True isInitialized --- ---

withdraw external True isInitialized --- ---

claimFor public True isInitialized --- ---

safeTransfer internal True --- --- ---

 Let humanity enter the safe blockchain world.

- 12 -

4. Code vulnerability analysis

 Summary description of the audit results

Audit results
audit

project
audit content condition description

Business

security

detection

Bank.sol contract

withdraws the rental

token function

Pass After testing, there is no security issue.

GLA.sol contract

whitelist related

function

Pass After testing, there is no security issue.

GLA.sol contract

request token function
Pass After testing, there is no security issue.

Helper.sol contract

investment stablecoin

function

Pass After testing, there is no security issue.

Market.sol contract

stablecoin related

function

Pass After testing, there is no security issue.

StakePool.sol contract

pledge related function
Pass After testing, there is no security issue.

Code

basic

vulnerabi

lity

detection

Compiler version

security
Pass After testing, there is no security issue.

Redundant code Pass After testing, there is no security issue.

Use of safe arithmetic

library
Pass After testing, there is no security issue.

Not recommended

encoding
Pass After testing, there is no security issue.

Reasonable use of

require/assert
Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 13 -

fallback function safety Pass After testing, there is no security issue.

tx.origin authentication Pass After testing, there is no security issue.

Owner permission

control
Pass After testing, there is no security issue.

Gas consumption

detection
Pass After testing, there is no security issue.

call injection attack Pass After testing, there is no security issue.

Low-level function

safety
Pass After testing, there is no security issue.

Vulnerability of

additional token

issuance

Reminder
After testing, tokens can be issued

additionally.

Access control defect

detection
Pass After testing, there is no security issue.

Numerical overflow

detection
Pass After testing, there is no security issue.

Arithmetic accuracy

error
Pass After testing, there is no security issue.

Wrong use of random

number detection
Pass After testing, there is no security issue.

Unsafe interface use Pass After testing, there is no security issue.

Variable coverage Pass After testing, there is no security issue.

Uninitialized storage

pointer
Pass After testing, there is no security issue.

Return value call

verification
Pass After testing, there is no security issue.

Transaction order

dependency detection
Pass After testing, there is no security issue.

Timestamp dependent

attack
Pass After testing, there is no security issue.

Denial of service attack

detection
Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 14 -

Fake recharge

vulnerability detection
Pass After testing, there is no security issue.

Reentry attack detection Pass After testing, there is no security issue.

Replay attack detection Pass After testing, there is no security issue.

Rearrangement attack

detection
Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 15 -

5. Business security detection

 Bank.sol contract withdraws the rental token function

【Pass】

Audit analysis: The withdrawable function of the contract is used to calculate the

amount of Chaos that users can withdraw. The available function and borrowFrom

function of the contract are used to calculate the amount of Chaos that the current user

can borrow. The function has the correct permissions and no obvious security issues

have been found.

function withdrawable(address user, uint256 amountChaos) external view override isInitialized

returns (uint256){

uint256 userDebt = debt[user];

uint256 floorPrice = market.f();

if (amountChaos * floorPrice <= userDebt * 1e18) {//knonwsec If the user's debt is greater than

the token price, they will not borrow

return 0;

}

return (amountChaos * floorPrice - userDebt * 1e18) / floorPrice;//knownsec Returns the

number of tokens the user can withdraw

}

function available(address user) public view override isInitialized returns (uint256){

uint256 userDebt = debt[user];

(uint256 amountChaos,) = pool.userInfo(0, user);

uint256 floorPrice = market.f();

if (amountChaos * floorPrice <= userDebt * 1e18) {//knonwsec If the user's debt is greater than

the token price, they will not borrow

return 0;

}

 Let humanity enter the safe blockchain world.

- 16 -

return (amountChaos * floorPrice - userDebt * 1e18) / 1e18; //knownsec Returns the number of

tokens the user can withdraw

}

function repay(uint256 amount) external override isInitialized whenNotPaused{

require(amount > 0, "Bank: amount is zero");

uint256 userDebt = debt[_msgSender()];//knownsec Get the user's current debt

require(userDebt >= amount, "Bank: exceeds debt");

Order.burnFrom(_msgSender(), amount);//knownsec Authorize Destruction Order

unchecked {

debt[_msgSender()] = userDebt - amount;

}

emit Repay(_msgSender(), amount);

}

Security advice: None.

 GLA.sol contract whitelist related function【Pass】

Audit analysis: The addWhitelist function of the contract is used to add whitelist

users, and the whitelistBuy function is used for whitelist users to purchase Chaos. The

function has the correct permissions and no obvious security issues have been found.

function addWhitelist(address[] memory users) external beforeWhiteList onlyOwner{

for (uint256 i = 0; i < users.length; i++) {

address user = users[i];

if (whitelistSharesOf[user] == 0) {//knownsec If not in the whitelist

whitelistSharesOf[user] = EXISTS_IN_WHITELIST;

whitelist.push(user);

}

}

}

 Let humanity enter the safe blockchain world.

- 17 -

function whitelistBuy(uint256 amount) external whitelistEnabled {

require(amount > 0, "GLA: zero amount");

uint256 shares = whitelistSharesOf[_msgSender()];

require(shares != 0, "GLA: invalid whitelist user");//knownsec need to be in the whitelist

shares = shares == EXISTS_IN_WHITELIST ? 0 : shares;

uint256 maxCap = whitelistMaxCapPerUser - shares;

if (amount > maxCap) {

amount = maxCap;

}

require(amount > 0, "GLA: zero amount");

USDC.safeTransferFrom(_msgSender(), address(this), amount);//knownsec Transfer USDC to

the project party

whitelistTotalShares += amount;

whitelistSharesOf[_msgSender()] = shares + amount;

}

Security advice: None.

 GLA.sol contract request token function【Pass】

Audit analysis: The claim function of the contract is used to claim Chaos.

Although the Safetransfer function is not used, the maximum value of the transferred

tokens is checked when the transfer function is called. Therefore, the function has the

correct permissions and no obvious security problems have been found.

function claim() external isInitialized {

uint256 chaos = estimateClaim(_msgSender());

require(chaos > 0, "GLA: zero chaos");

uint256 max = Chaos.balanceOf(address(this));

Chaos.transfer(_msgSender(), max < chaos ? max : chaos);//knownsec Check if the maximum

value of transferred tokens exceeds the threshold

 Let humanity enter the safe blockchain world.

- 18 -

delete whitelistSharesOf[_msgSender()];

delete publicOfferingSharesOf[_msgSender()];

}

Security advice: None.

 Helper.sol contract investment stablecoin function【Pass】

Audit analysis: The contract's invest function and reinvest function are used for

stablecoin investment, the borrowAndInvest function is used to borrow stablecoin

Oreder to invest in volatility currency Chaos, and when buyFor function uses

estimateBuy to buy volatility currency, a modifier is used to check whether the

stablecoin can replace the volatility currency , the function permissions are correct, and

no obvious security problems have been found.

function invest(address token,uint256 tokenWorth,uint256 desired,bool borrow) public override {

IERC20(token).safeTransferFrom(_msgSender(), address(this), tokenWorth);

IERC20(token).approve(address(market), tokenWorth);

(uint256 chaos,) = market.buyFor(token,tokenWorth,desired,_msgSender());//knownsec Check

stablecoin origin by modifier canbuy

Chaos.approve(address(pool), chaos);

pool.depositFor(0, chaos, _msgSender());

if (borrow) {

borrowAndInvest((chaos * market.f()) / 1e18);

}

}

function reinvest(address token,uint256 amount,uint256 desired) external override {

prChaos.transferFrom(_msgSender(), address(this), amount);

(, uint256 worth) = market.estimateRealize(amount, token); //knownsec Check stablecoin origin

 Let humanity enter the safe blockchain world.

- 19 -

by modifier canbuy

IERC20(token).safeTransferFrom(_msgSender(), address(this), worth);

IERC20(token).approve(address(market), worth);

prChaos.approve(address(market), amount);

market.realizeFor(amount, token, desired, _msgSender());

Chaos.approve(address(pool), amount);

pool.depositFor(0, amount, _msgSender());

}

Security advice: None.

 Market.sol contract stablecoin related function【Pass】

Audit analysis: The canBuy modifier of the contract is used to check whether the

specified stablecoin is eligible to exchange chaos, the addBuyStablecoin function is

used to add stablecoins that can replace chaos, and the manageStablecoins function is

used to manage stablecoins. The function has the correct permissions and no obvious

security issues have been found.

modifier canBuy(address token) {

require(stablecoinsCanBuy.contains(token), "Market: invalid buy token");

_;

}

function addBuyStablecoin(address token) external onlyRole(ADD_STABLECOIN_ROLE){

uint8 decimals = IERC20Metadata(token).decimals();

require(decimals > 0, "Market: invalid token");

stablecoinsDecimals[token] = decimals;

stablecoinsCanBuy.add(token);//knownsec Add stablecoins

emit StablecoinsChanged(token, true, true);

}

 Let humanity enter the safe blockchain world.

- 20 -

function manageStablecoins(address token, bool buyOrSell,bool addOrDelete) external override

onlyRole(MANAGER_ROLE) {

if (addOrDelete) {

uint8 decimals = IERC20Metadata(token).decimals();

require(decimals > 0, "Market: invalid token");

stablecoinsDecimals[token] = decimals;

if (buyOrSell) {

revert("Market: please call addBuyStablecoin!");

} else {

stablecoinsCanSell.add(token);

}

} else {

if (buyOrSell) {

stablecoinsCanBuy.remove(token);

} else {

stablecoinsCanSell.remove(token);

}

}

emit StablecoinsChanged(token, buyOrSell, addOrDelete);

}

Security advice: None.

 StakePool.sol contract pledge related function【Pass】

Audit analysis: The add function of the contract is used to add lp tokens, the

pendingRewards function is used to view the rewards issued on the front end, the

massUpdatePools and updatePool functions are used to update the pledge pool in

batches, the depositFor and deposit are used to deposit tokens, and the withdraw

 Let humanity enter the safe blockchain world.

- 21 -

function is used to withdraw tokens. The function has the correct permissions and no

obvious security issues have been found.

function add(uint256 _allocPoint,IERC20 _lpToken,bool _withUpdate) external override

isInitialized onlyOwner {

if (poolInfo.length == 0) {

require(address(_lpToken) == address(Chaos),"StakePool: invalid lp token");

}

if (_withUpdate) {

massUpdatePools();

}

totalAllocPoint = totalAllocPoint + _allocPoint;//knownsec Increase total distribution points

poolInfo.push(PoolInfo({lpToken: _lpToken,allocPoint: _allocPoint,lastRewardBlock:

block.number,accPerShare: 0}));

}

function massUpdatePools() public override isInitialized {

uint256 totalSupply = Chaos.totalSupply();

uint256 length = poolInfo.length;

for (uint256 pid = 0; pid < length; ++pid) {//knownsec Batch update mining pool

updatePool(pid, totalSupply);

}

}

function depositFor(

 uint256 _pid,

 uint256 _amount,

 address _user

) public override isInitialized {

 PoolInfo storage pool = poolInfo[_pid];

 UserInfo storage user = userInfo[_pid][_user];

 updatePool(_pid, Chaos.totalSupply());

 if (user.amount > 0) {

 Let humanity enter the safe blockchain world.

- 22 -

 uint256 pending = (user.amount * pool.accPerShare) /

 1e12 -

 user.rewardDebt;

 if (pending > 0) {

 safeTransfer(_user, pending);

 }

 }

 pool.lpToken.safeTransferFrom(msg.sender, address(this), _amount);//knownsec

Transfer LP tokens

 user.amount = user.amount + _amount;

 user.rewardDebt = (user.amount * pool.accPerShare) / 1e12;//knownsec Calculate the

reward ratio

 emit Deposit(_user, _pid, _amount);

}

function withdraw(uint256 _pid, uint256 _amount)

 external

 override

 isInitialized

 {

 PoolInfo storage pool = poolInfo[_pid];

 UserInfo storage user = userInfo[_pid][msg.sender];

 require(user.amount >= _amount, "StakePool: withdraw not good");

 updatePool(_pid, Chaos.totalSupply());

 uint256 pending = (user.amount * pool.accPerShare) /

 1e12 -

 user.rewardDebt;

 if (pending > 0) {

 safeTransfer(msg.sender, pending);

 }

 uint256 fee = 0;

 if (_pid == 0) {

 uint256 withdrawable = bank.withdrawable(msg.sender,

 Let humanity enter the safe blockchain world.

- 23 -

user.amount);//knownsec Calculate the number of coins that can be withdrawn

 require(

 withdrawable >= _amount,

 "StakePool: amount exceeds withdrawable"

);

 fee = (_amount * withdrawFee) / 10000;

 }

 user.amount = user.amount - _amount;

 user.rewardDebt = (user.amount * pool.accPerShare) / 1e12;

 pool.lpToken.safeTransfer(msg.sender, _amount - fee);

 pool.lpToken.safeTransfer(dev, fee);

 emit Withdraw(msg.sender, _pid, _amount - fee, fee);

 }

Security advice: None.

 Let humanity enter the safe blockchain world.

- 24 -

6. Code basic vulnerability detection

 Compiler version security【Pass】

Check to see if a secure compiler version is used in the contract code

implementation.

Detection results: After testing, the compiler version is greater than or equal to

0.8.0 in the smart contract code, and there is no such security problem.

Security advice: None.

 Redundant code【Pass】

Check that the contract code implementation contains redundant code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Use of safe arithmetic library【Pass】

Check to see if the SafeMath security abacus library is used in the contract code

implementation.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 25 -

Security advice: None.

 Not recommended encoding【Pass】

Check the contract code implementation for officially uns recommended or

deprecated coding methods.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Reasonable use of require/assert【Pass】

Check the reasonableness of the use of require and assert statements in contract

code implementations.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 26 -

Security advice: None.

 Fallback function safety【Pass】

Check that the fallback function is used correctly in the contract code

implementation.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 tx.origin authentication【Pass】

tx.origin is a global variable of Solidity that traverses the entire call stack and

returns the address of the account that originally sent the call (or transaction). Using

this variable for authentication in smart contracts makes contracts vulnerable to

phishing-like attacks.z

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Owner permission control【Pass】

Check that theowner in the contract code implementation has excessive

 Let humanity enter the safe blockchain world.

- 27 -

permissions. For example, modify other account balances at will, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Gas consumption detection【Pass】

Check that the consumption of gas exceeds the maximum block limit.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 call injection attack【Pass】

When a call function is called, strict permission control should be exercised, or the

function called by call calls should be written directly to call calls.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Low-level function safety【Pass】

Check the contract code implementation for security vulnerabilities in the use of

call/delegatecall

 Let humanity enter the safe blockchain world.

- 28 -

The execution context of the call function is in the contract being called, while the

execution context of the delegatecall function is in the contract in which the function is

currently called.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Vulnerability of additional token issuance【Reminder】

Check to see if there are functions in the token contract that might increase the

total token volume after the token total is initialized.

Detection results: After testing, there is this problem in the smart contract code,

Chaos and Order tokens can be issued by the owner. However, according to the

OrderNChaos deployment specification, the owner of Order will be set to Bank, the

owner of Chaos will be Market, and the MINT_ROLE of prChaos will be assigned to

Bank. After that, the permissions of all contracts will be transferred to the Timelock

contract, and OrderNChaos cannot issue additional tokens at any time. Need to wait for

confirmation in Timelock. This part of the business logic is not in the contract, it

belongs to the deployment script code and cannot be objectively determined, so a hint

is given.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 29 -

 Access control defect detection【Pass】

Different functions in the contract should set reasonable permissions, check

whether the functions in the contract correctly use pubic, private and other keywords

for visibility modification, check whether the contract is properly defined and use

modifier access restrictions on key functions, to avoid problems caused by overstepping

the authority.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Numerical overflow detection【Pass】

The arithmetic problem in smart contracts is the integer overflow and integer

overflow, with Solidity able to handle up to 256 digits (2^256-1), and a maximum

number increase of 1 will overflow to get 0. Similarly, when the number is an unsigned

type, 0 minus 1 overflows to get the maximum numeric value.

Integer overflows and underflows are not a new type of vulnerability, but they are

particularly dangerous in smart contracts. Overflow conditions can lead to incorrect

results, especially if the likelihood is not anticipated, which can affect the reliability

and safety of the program.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 30 -

 Arithmetic accuracy error【Pass】

Solidity has a data structure design similar to that of a normal programming

language, such as variables, constants, arrays, functions, structures, and so on, and there

is a big difference between Solidity and a normal programming language - Solidity does

not have floating-point patterns, and all of Solidity's numerical operations result in

integers, without the occurrence of decimals, and without allowing the definition of

decimal type data. Numerical operations in contracts are essential, and numerical

operations are designed to cause relative errors, such as sibling operations: 5/2 x 10 x

20, and 5 x 10/2 x 25, resulting in errors, which can be greater and more obvious when

the data is larger.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Incorrect use of random numbers【Pass】

Random numbers may be required in smart contracts, and while the functions and

variables provided by Solidity can access significantly unpredictable values, such as

block.number and block.timestamp, they are usually either more public than they seem,

or are influenced by miners, i.e. these random numbers are somewhat predictable, so

malicious users can often copy it and rely on its unpredictability to attack the feature.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 31 -

Security advice: None.

 Unsafe interface usage【Pass】

Check the contract code implementation for unsafe external interfaces, which can

be controlled, which can cause the execution environment to be switched and control

contract execution arbitrary code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Variable coverage【Pass】

Check the contract code implementation for security issues caused by variable

overrides.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Uninitialized storage pointer【Pass】

A special data structure is allowed in solidity as a strut structure, while local

variables within the function are stored by default using stage or memory.

The existence of store (memory) and memory (memory) is two different concepts,

solidity allows pointers to point to an uninitialized reference, while uninitialized local

 Let humanity enter the safe blockchain world.

- 32 -

stage causes variables to point to other stored variables, resulting in variable overrides,

and even more serious consequences, and should avoid initializing the task variable in

the function during development.

Detection results: After detection, the smart contract code does not have the

problem.

Security advice: None.

 Return value call verification【Pass】

This issue occurs mostly in smart contracts related to currency transfers, so it is

also known as silent failed sending or unchecked sending.

In Solidity, there are transfer methods such as transfer(), send(), call.value(), which

can be used to send tokens to an address, the difference being: transfer send failure will

be throw, and state rollback; Call.value returns false when it fails to send, and passing

all available gas calls (which can be restricted by incoming gas_value parameters) does

not effectively prevent reentration attacks.

If the return values of the send and call.value transfer functions above are not

checked in the code, the contract continues to execute the subsequent code, possibly

with unexpected results due to token delivery failures.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 33 -

 Transaction order dependency【Pass】

Because miners always get gas fees through code that represents an externally

owned address (EOA), users can specify higher fees to trade faster. Since blockchain is

public, everyone can see the contents of other people's pending transactions. This means

that if a user submits a valuable solution, a malicious user can steal the solution and

copy its transactions at a higher cost to preempt the original solution.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Timestamp dependency attack【Pass】

Block timestamps typically use miners' local time, which can fluctuate over a

range of about 900 seconds, and when other nodes accept a new chunk, they only need

to verify that the timestamp is later than the previous chunk and has a local time error

of less than 900 seconds. A miner can profit from setting the timestamp of a block to

meet as much of his condition as possible.

Check the contract code implementation for key timestamp-dependent features.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 34 -

Security advice: None.

 Denial of service attack【Pass】

Smart contracts that are subject to this type of attack may never return to normal

operation. There can be many reasons for smart contract denial of service, including

malicious behavior as a transaction receiver, the exhaustion of gas caused by the

artificial addition of the gas required for computing functionality, the misuse of access

control to access the private component of smart contracts, the exploitation of confusion

and negligence, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Fake recharge vulnerability【Pass】

The transfer function of the token contract checks the balance of the transfer

initiator (msg.sender) in the if way, when the balances < value enters the else logic part

and return false, and ultimately does not throw an exception, we think that only if/else

is a gentle way of judging in a sensitive function scenario such as transfer is a less

rigorous way of coding.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 35 -

 Reentry attack detection【Pass】

The call.value() function in Solidity consumes all the gas it receives when it is

used to send tokens, and there is a risk of re-entry attacks when the call to the call tokens

occurs before the balance of the sender's account is actually reduced.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Replay attack detection【Pass】

If the requirements of delegate management are involved in the contract, attention

should be paid to the non-reusability of validation to avoid replay attacks

In the asset management system, there are often cases of entrustment management,

the principal will be the assets to the trustee management, the principal to pay a certain

fee to the trustee. This business scenario is also common in smart contracts.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Rearrangement attack detection【Pass】

A reflow attack is an attempt by a miner or other party to "compete" with a smart

contract participant by inserting their information into a list or mapping, giving an

attacker the opportunity to store their information in a contract.

 Let humanity enter the safe blockchain world.

- 36 -

Detection results: After detection, there are no related vulnerabilities in the smart

contract code.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 37 -

7. Appendix A: Security Assessment of Contract Fund
Management

Contract fund management
The type of asset in

the contract
The function is involved Security risks

User Mortgage Token

Assets
Invest，reinvest，borrowAndInvest PASS

User mortgage

platform currency

assets

_mint，burn，burnFrom，add,

deposit, withdraw
PASS

Check the security of the management of digital currency assets transferred by

users in the business logic of the contract. Observe whether there are security risks that

may cause the loss of customer funds, such as incorrect recording, incorrect transfer,

and backdoor withdrawal of the digital currency assets transferred into the contract.

 Let humanity enter the safe blockchain world.

- 38 -

